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1. 

Many physical and engineering problems have features which may be qualitatively
described by coupled systems of non-linear oscillators. The natural frequencies of these
systems may be combined through non-linear interactions so as to produce internal
resonances. In most of the work done on the subject, the natural frequencies are assumed
to be time independent, with the resonant conditions satisfied for all the time. These
stationary oscillator systems have been dealt with by ordinary multi-scale methods in many
articles and books, such as in references [1, 2] etc. But many problems of physical interest
are governed by systems with slowly varying coefficients. The ordinary perturbation theory
cannot handle this kind of problem because of mathematical difficulties. In paper [3], a
one-dimensional oscillator with slowly varying frequency was discussed and an improved
multi-scale method was proposed. In another expository paper, Kevorkian [4] has
summarized the perturbation techniques and results for a general system of first order
equations that model various weakly non-linear oscillatory motions with slowly varying
parameters. Recently, Bosley [5] used the canonical averaging techniques to deal with the
slowly varying oscillatory systems in Hamiltonian standard forms to very high orders and
study the adiabatic invariance. Kevorkian and Bosley [6, 7] have discussed a model
problem of two oscillators with weakly non-linear coupling and with either constant or
slowly varying frequencies to survey perturbation techniques based on the improved
multi-scale method applied to resonance problems.

In this paper, the following quadratically coupled non-linear oscillator system is
discussed:

ẍ+ a2(ot)x= oy2;
ÿ+ b2(ot)y= ox2,

(1)

where o is a small positive quantity and a(ot), b(ot)q 0. The asymptotic solutions of this
system will be derived when a(ot) and b(ot) vary slowly with time.

2.     (1)

It is not difficult to see that as the ordinary multi-scale method fails in dealing with this
case an improved method must be introduced instead.

2.1. Outer expansion
Firstly, the outer expansions of system (1) are discussed. A slow time scale t
 = ot is

introduced with the following two fast time scales:

m=(1/o) g
t


0

a(s) ds, n=(1/o) g
t


0

b(s) ds. (2)
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It is assumed that the solution can be expanded in the form

6x= x0 (m, t
 )+ ox1 (m, t
 )+ o2x2 (m, t
 )+O(o3);
y= y0 (n, t
 )+ oy1 (n, t
 )+ o2y2 (n, t
 )+O(o3),

(3)

where the xi’s only depend on m, t
 and the yi’s only depend on n, t
 (see [3, 6]). Substituting
(2) and (3) into (1) and letting the coefficients of the same order be equal to zero, one gets

6x0 = â0 (t
 ) cos [m+f
 0];
y0 = b
 0 (t
 ) cos [m+c
 0],

(4)

and

6x1 = â1 (t
 ) cos [m+f
 1 (t
 )]+ b
 20(t
 )/(2a2)+ {b
 20(t
 )/[(2(a2 −4b2)]} cos 2(n+c
 0);
y1 = b
 1 (t
 ) cos [n+c
 1 (t
 )]+ â2

0(t
 )/(2b2)+ {â2
0(t
 )/[(2(b2 −4a2)]} cos 2(m+f
 0),

(5)

where â0 (t
 )= â0 (0)za(0)/a(t
 ), b
 0 (t
 )= b
 0 (0)zb(0)/b(t
 ), f
 0, c
 0, â0 (0) and b
 0 (0)
are constants, â1 (t
 ), b
 1 (t
 ), f
 1 (t
 ) and c
 1 (t
 ) are to be determined by higher order terms.

2.2. Inner expansion
In what follows one considers the specific slowly varying parameters:

a(t
 )=2b0 + a1 (t
 − t0), b(t
 )= b0 + b1 (t
 − t0). (6)

It is easy to see that a 2 : 1 internal resonance (i.e., a(t
 )1 2b(t
 )) will take place when
t
 1 t0. To solve this problem, the following slow time scale is introduced:

t�= o−1/2(t
 − t0) (7)

The fast time scale is taken as t. Moreover, suppose that

6x= x̄0 (t, t̄)+ o1/2x̄1 (t, t�)+ ox̄2 (t, t�)+O(o3/2);
y= ȳ0 (t, t̄)+ o1/2ȳ1 (t, t�)+ oȳ2 (t, t�)+O(o3/2),

(8)

Substituting (8) into (1) in the same way as the previous discussion, one has the following
asymptotic solutions for =t�=:a:

x= ā0 (0) cos [r+f�0 (0)]+ o1/2{[A1 (0)+ sgn (t�) (r1 I1 − r2 I2)] cos r

+ [B1 (0)+ sgn (t�) (r2 I1 + r1 I2)] sin r+ p1 t� cos r+ p2 t� sin r

− (r1 sin 2u− r2 cos 2u)}/[(a1 −2b1)t�]}+O(o)+O(t�−3); (9)

y= b�0 (0) cos [u+c�0 (0)]+ o1/2[C1 (0) cos u

+ D1 (0) sin u+ c1 t� cos u+ c2 t� sin u]+O(o)+O(t�−3),

where

r=2b0 t+ a1 t�2/2, u= b0 t+ b1 t�2/2 (10)

and ā0 (0), b�0 (0), f�0 (0), c�0 (0), A1 (0), B1 (0), C1 (0), D1 (0) are constants;

p=−[ā0 (0)a1 /(4b0)] eif�0 (0) 0 p1 + ip2 ;

r=[ib�2
0(0)/(8b0)] e−2ic�0 (0) 0 r1 + ir2 ;
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c=−[b�0 (0)b1 /(2b0)] e−ic�0 (0) 0 c1 + ic2 ;
(11)

I=zp/=a1 −2b1 = [1+ isgn (a1 −2b1)]/20 I1 + iI2.

2.3. Matching in overlapping domain
To obtain the uniformly valid expansions of the system (1) for all the time, we must

match the results of sections 2.1 and 2.2 in their overlapping domain. Introduce a new time
variable:

th =(t
 − t0)/oh, (12)

where 0E h1 Q hQ h2 E 1/2, h is to be determined by the following process. Substituting
(12) into (2) and (10), then

6m= t0 /o+ oh−12b0 th + o2h−1a1 t2
h/2;

n= k0 /o+ oh−1b0 th + o2h−1b1 t2
h/2,

(13)

6r=2b0 t0 /o+ oh−12b0 th + a1 o2h−1t2
h/2;

u= b0 t0 /o+ oh−12b0 th + b1 o2h−1t2
h/2,

(14)

where

t0 =g
t0

0

a(s) ds, k0 =g
t0

0

b(s) ds. (15)

Comparing (13) with (14), one has

8m=(t0 −2b0 t0)/o+ r;
n=(k0 − b0 t0)/o+ u;
t
 = t0 + ohth .

(16)

Thus, the outer and inner expansions for x are given respectively as:

xo(th , o)= â0 (0)za(0)/(2b0) {cos [r+(t0 −2b0 t0)/o+f
 0]

− oh(a1 th /(4b0)) cos [r+ t0 /o+f
 0]}

+ o1− h{b
 20(0)b0 /[8b0 (a1 −2b1)th ]} cos 2[(k0 − b0 t0)/o+c
 0 + u]

+ O(o4h−1)+O(o); (17)

xi(th , o)= ā0 (0) cos [r+f�0 (0)]+ o1/2{[A1 (0)+ r2 I2 − r1 I1] cos r

+ [B1 (0)− r2 I1 − r1 I2] sin r}+ ohp1 th cos r+ ohp2 th sin r

− o1− h(r1 sin 2u− r2 cos 2u)/[(a1 −2b1)th ]+O(o2−3h)

The singular term of x1 in equation (5) contributes the last term in xo(th , o) and the
contribution of the rest of x1 is O(o). The remainder of order o2−3h in xi(th , o) represents
the terms of order t�−3 which are neglected in the inner expansion. By letting
2−3h=4h−1, one has h=3/7. In order to match the results to O(o1/2), one must require
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Figure 1. Variation of x(t) with time (o=0·001): ——, numerical; · · · · , theoretical.

that [xo(th , o)− xi(th , o)]/o1/2:0 (for o:0 and th fixed), so some coefficients in these
expansions can be obtained as follows:

6ā0 (0)= â0 (0)za(0)/(2b0) ;
f�0 (0)= (t0 −2b0 t0)/o+f
 0.

(18)

Figure 2. Variation of x(t) with time (o=0·01): key as Figure 1.

Figure 3. Variation of x(t) with time (o=0·1): key as Figure 1.
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Figure 4. Power spectrum (o=0·001).

Figure 5. Power spectrum (o=0·01).

As the outer expansion does not include the terms of O(o1/2), one knows that

6A1 (0)= r1 I1 − r2 I2 ;
B1 (0)= r2 I1 + r1 I2.

(19)

Similarly, one obtains

b�0 (0)= b
 0 (0)zb(0)/b0 ;

c�0 (0)= (k0 − b0 t0)/o+c
 0 ;

C1 (0)=0;
(20)

D1 (0)=0.

From the definitions of ri and pi (i=1, 2) in (11) one knows that the inner and outer
expansions are matched with each other.

3.  

In order to verify the present theory, some numerical results are given in Figures 1–3
(solid lines represent numerical results, dots represent theoretical results, and b0 =10,
a1 =1, b1 =1·5, t0 =1). The internal resonance will occur when ot1 1. Here one lets all
x take the form of the inner expansion when =t− t0 /o =E 0·1 and the outer expansion when
=t− t0 /o =q 0·1, it is easy to see that the errors become small following the decrease of the
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Figure 6. Power spectrum (o=0·1).

small parameter o. Moreover, similar results can be obtained for other values of the
parameters. It shows that the improved multi-scale method is valid in the analysis of slowly
varying oscillatory systems.

Moreover, through a power spectrum analysis, one finds that the solution for o=0·001
has only a single frequency (see Figure 4), but the power spectrum grows increasingly wider
when o increases gradually (see Figure 5), and becomes continuous over greater frequency
intervals so that the system (1) appears to be chaotic (See Figure 6). It means that the
chaotic behavior of the systems is greatly influenced by the non-stationary variations.



This work was partially supported by the National Natural Science Foundation of
China, the Science Foundation of Aviation of China and the Education Foundation of
China.



1. A. H. N 1973 Perturbation Methods.
2. A. H. N and D. T. M 1979 Nonlinear Oscillations.
3. J. K 1971 SIAM Journal of Applied Mathematics 20, 364–373. Passage through

resonance for a one-dimensional oscillator with slowly varying frequency.
4. J. K 1985 SIAM Review 29, 391–461. Perturbation techniques for oscillatory systems

with slowly varying coefficients.
5. D. L. B and J. K 1992 SIAM Journal of Applied Mathematics 52, 494–527.

Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian
systems.

6. J. K 1980 Studies in Applied Mathematics 62, 23–67. Resonance in a weakly non-linear
system with slowly varying parameters.

7. D. L. B 1996 SIAM Journal of Applied Mathematics 56, 420–445. An improved matching
procedure for transient resonance layers in weakly nonlinear oscillatory systems.


